Soil Test P vs. Total P in Wisconsin Soils

Larry G. Bundy & Laura W. Good
Department of Soil Science
University of Wisconsin-Madison
Introduction

• Soil test P is often measured
• Little information is available on total P content of soils
• Why do we care about total P now?
 - Soil total P is a necessary input for the P-index
 - P-index is one option for P-based nutrient management planning
 - Total P is needed to estimate the particulate P component of the P index
Components of the Phosphorus Index (PI):

\[\text{PI} = \text{PP} + \text{SP} \]

\[\text{PI} = \text{Total P index} \]

\[\text{PP} = \text{Particulate P} \]

\[\text{SP} = \text{Soluble P} \]
Introduction

• Total P analysis is too time consuming and expensive for routine soil testing.

• Interest in predicting total P from readily available info., such as soil test P.
Book Values for Soil Total P

<table>
<thead>
<tr>
<th>Source</th>
<th>Total soil P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Havlin et al., 1999</td>
<td>0.005-0.15</td>
</tr>
<tr>
<td>Schulte & Walsh, 1998</td>
<td>0.10</td>
</tr>
<tr>
<td>Troeh & Thompson, 1993</td>
<td>0.035-0.25</td>
</tr>
</tbody>
</table>
Soil P-Total P Comparison

• Total P and Bray soil test P measured on 90 agricultural soil samples selected to represent major soil groups and for geographic distribution.
 - Wisconsin Soil and Plant Analysis Laboratory
 - Bray P-1, and soil total P
 - Other routine tests performed (eg., soil organic matter)
Soil Total P

Northern loamy soils
avg = 540 ppm
range = 480-580 ppm
n = 4

Southern forest soils
avg = 600 ppm
range = 350 - 1400 ppm
n = 43

Southern prairie soils
avg = 700 ppm
range = 380 - 1300 ppm
n = 27

Eastern red soils
avg = 950 ppm
range = 430 - 2820 ppm
n = 12

Sandy soils
range = 250 - 400 ppm
n = 2

Organic soils: range = 1330 - 1350 ppm, n = 2
Total Phosphorus Content of Wisconsin Soils

<table>
<thead>
<tr>
<th>Soil group</th>
<th>No.</th>
<th>Range</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Forest soils</td>
<td>43</td>
<td>350-1400</td>
<td>600</td>
</tr>
<tr>
<td>S. Prairie soils</td>
<td>27</td>
<td>380-1300</td>
<td>700</td>
</tr>
<tr>
<td>N. Loamy soils</td>
<td>4</td>
<td>480-580</td>
<td>540</td>
</tr>
<tr>
<td>E. Red soils</td>
<td>12</td>
<td>430-2820</td>
<td>950</td>
</tr>
<tr>
<td>Sandy soils</td>
<td>2</td>
<td>250-400</td>
<td>--</td>
</tr>
<tr>
<td>Organic soils</td>
<td>2</td>
<td>1330-1350</td>
<td>--</td>
</tr>
</tbody>
</table>
Soil test P poor predictor of soil total P

\[y = 3.5x + 440 \]

\[R^2 = 0.42 \]
Soil test P and percent organic matter together good predictors of soil total P

Soil total P = -77.8 + 170 (OM%) + 2.5 (Bray P)

R²=0.92
Particulate P concentrations can be predicted with soil test P and soil organic matter.
Summary

• Based on preliminary data, total P in soils can be predicted from Bray P-1 soil test P and soil organic matter content.

• Soil test P- total soil P relationships will be refined using data from an on-going comparison.